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Motivation
● Farfield speech recognition is becoming a new way to interact with devices at 

home.
● Farfield speech is difficult due to both additive and reverberant noises.
● Multi-channel signal processing techniques attempt to enhance signal and 

suppress noise.
● In this work, we detail different research ideas explored towards developing 

Google Home.



Typical Multi-channel Processing
● Most multichannel ASR systems use two separate modules

1) Speech-enhancement (i.e., localization, beamforming)                                                                       
2) Single-channel acoustic model 

● Traditional Filter+Sum (F+S) for enhancement

● Can we do enhancement and acoustic modeling jointly?



Neural-Beamforming Layers Explored in This Work
● We explore training a neural beamforming layer jointly with the acoustic model, using the 

raw-waveform to model fine time structure
● Traditional F+S

○ Learns localization ᶦc for every utterance
○ Learns a filter hc for every utterance

Neural Beamforming Architecture Learning Methodology

Unfactored raw-waveform - uRaw Time-domain filter hc fixed after training

Factored raw-waveform - fRaw Set of p time-domain filters hc fixed after training

Factored Complex Linear Prediction - fCLP Set of p frequency-domain filters hc fixed after training

Neural Adaptive Beamforming - NAB Time/frequency filter hc updated at every time frame t



Related Work, Joint Multi-channnel Enhancement + AM
● [Seltzer, 2004] explored joint enhancement + acoustic modeling using a 

model-based GMM approach
● Beamformer with filter-based estimation network [Xiao, 2016] 

○ Similar to the NAB model we will discuss [B. Li, 2016]

● Beamformer with mask estimation network [Heymann 2016, Erdogan 2016]
● Beamformer with both mask + filter estimation, end-to-end framework [Ochiai 

2017] 

    

      Focus of our work is to detail the architectures explored for Google HOME.



Initial Experimental Setup
Training data:

● 3M English utterances
● 2,000 hours noisy data 
● artificially corrupted with music, ambient 

noise, recordings of "daily life" environments
● SNRs: 0 ~ 30dB, avg. = 11dB
● Reverberation RT60: 0 ~ 900ms, avg. = 

500ms
● 8 channel linear mic with spacing of 2cm
● Noise and speaker locations change per utt

Testing data:

● 13K English utterances
● 15 hours data 
● simulated: matching training data
● Channel details: 

○ 2 channel (1, 8): 14cm spacing
○ 4 channel (1, 3, 6, 8): 4-6-4cm spacing
○ 8 channel: 2cm spacing

Experiments are conducted to understand benefit of each proposed method. 



Unfactored Raw-Waveform Model

T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, M. Bacchiani and A. Senior, "Speaker Location and Microphone 
Spacing Invariant Acoustic Modeling from Raw Multichannel Waveforms," in Proc. ASRU, December 2015.

https://sites.google.com/site/tsainath/tsainath_multi_rawwaveform_cldnn.pdf?attredirects=0
https://sites.google.com/site/tsainath/tsainath_multi_rawwaveform_cldnn.pdf?attredirects=0


Motivation from Traditional Filter + Sum
● Traditional filter + sum

● Can we use a network to jointly estimate steering delays and filter 
parameters while optimizing acoustic model performance?

● P filters to capture many fixed steering delays



Unfactored raw-waveform architecture

Layer similar to F+S but without estimating ᶦc



Unfactored raw-waveform architecture

Layer similar to F+S but without estimating ᶦc



From Samples to Time-Frequency Representation

● Inspired by gammatone processing, pool the output of F+S layer to give 
a “time-frequency” representation invariant to short time-shifts

● 1ch raw-waveform processing explored in [T.N. Sainath et al, 
Interspeech 2015]



Unfactored Model

● Neural beamforming 
raw-waveform layer does both 
spatial and spectral filtering

● Output of this layer is passed 
to an AM, all layers are trained 
jointly!



Spectral Filtering: Magnitude Response of Learned Filters

● Plot the magnitude response of 
the learned tConv filters

● Network seems to learn 
auditory-like bandpass filters

● Bandwidth increases with center 
frequency

● Learned filters give more 
resolution in lower frequencies



Beampattern Plots
● Pass an impulse response with different delays into filter, measure the 

magnitude response



What Does The Network Learn?

● Filter coefficients in two channels 
are shifted, similar to the 
steering delay concept.

● Most filters have bandpass 
response in frequency

● Filters are doing spatial and 
spectral filtering!



Learned Filter Null Direction
Strong correlation between AOA noise distribution and null direction of learned filters 



Spatial Diversity of Learned Filters

● Increasing number of filters P allows more complex spatial responses
● See improvements in WER as we increase the number of spatial filters

Filters 2ch 4 ch 8ch

128 21.8 21.3 21.1

256 21.7 20.8 20.6

512 - 20.8 20.6



How Well Does Model Learn Localization?

● Unfactored raw-waveform, no oracle localization

● Delay-and-sum with oracle

● Time-aligned multi-channel (TAM) 



How Well Does Model Learn Localization?

● Model trained and tested with same microphone spacing
● Unfactored raw-waveform model learns implicit localization

Feature 1ch 2ch 
(14cm)

4ch 
(4-6-4cm)

8ch 
(2cm)

D+S, tdoa 23.5 22.8 22.5 22.4

TAM, tdoa 23.5 21.7 21.3 21.3

raw 23.5 21.8 21.3 21.1



Summary, Unfactored Raw-Waveform Model
● Numbers reported after cross-entropy and sequence training
● Oracle: true target speech TDOA and noise covariance known
● Unfactored 2-channel model improves over signal channel and traditional signal 

processing techniques

Architecture WER (after Seq.)

raw, 1ch 19.2

D+S, 8 channel, oracle 18.8

MVDR, 8 channel, oracle 18.7

raw, 2ch, unfactored 18.2



Factored Raw-Waveform Model

T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan and M. Bacchiani, "Factored Spatial 
and Spectral Multichannel Raw Waveform CLDNNs," in Proc. ICASSP, March 2016.

https://sites.google.com/site/tsainath/tsainath_factored.pdf?attredirects=0
https://sites.google.com/site/tsainath/tsainath_factored.pdf?attredirects=0


Motivation

● Most multichannel systems perform spatial filtering separately 
from single channel feature extraction

● Unfactored raw-waveform model
○ Does spatial and spectral filtering jointly
○ Can only increase spatial directions by increasing number of 

filters
● Can we factor these operations separately in the network?



Spatial Layer
● We want to implement a “filter and sum” 

layer
● Each channel x is convolved with P short 

filters h of length N (i.e., 5ms)
● The outputs after convolution are 

combined (i.e., filter-and-sum)            

● Factored layer does spatial filtering in 
different look directions p



Spectral Layer
● We pass these P look directions to a 

spectral layer which does a 
time-frequency decomposition

● Factored layers are trained jointly with 
acoustic modeling

          



Spatial Diversity of Factored Layer
Increasing the spatial diversity of the spatial layer improves WER

 # Spatial Filters P WER,CE

2ch, unfactored 21.8

1 23.6

3 21.6

5 20.7

10 20.4



Spatial Analysis

● First layer is doing spatial and spectral filtering, but within broad classes!



Analysis of First Layer

● Enforce spatial diversity only by fixing first layer to be impulse 
responses at different look directions and not training the layer

● Training the layer to do spatial/spectral filtering is beneficial

First Layer WER

Fixed (spatial only) 21.9

Trained (spatial and spectral) 20.9



Summary, Factored Raw-waveform model

● Factored network gives an additional 5% WERR over unfactored model

Architecture WER (after Seq.)

raw, 1ch 19.2

D+S, 8 channel 18.8

MVDR, 8 channel 18.7

raw, 2ch, unfactored 18.2

raw, 2ch, factored 17.2



Factored CLP (fCLP) Model

T. N. Sainath, A. Narayanan, R. Weiss, E. Variani, K. Wilson, M. Bacchiani and I. Shafran, "Reducing the Computational 
Complexity of  Multimicrophone Acoustic Models with Integrated Feature Extraction," in Proc. Interspeech, 2016.

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45490.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45490.pdf


Computational Complexity

Layer Total Multiplies In Practice (P=5)

Spatial P × C × M × N 525.6K

Factored P × F × L x (M− L + 1)/S 62.0M

AM - 19.1M

Layer Parameters

Input Samples: M, Channels: C

Factored Filter Size: N, Look Directions: P

Spectral Filter Size: L, Filters: F, Filter Stride: S



Factored Model in Frequency
● Time-domain processing is expensive
● Convolution in time represented by an element-wise dot product in frequency



Spectra Decomposition - Complex PCA
● Convolution in spectral layer can also be replaced by an element-wise dot 

product in frequency

● Instead of max-pooling, as is done in time, we perform average pooling in the 
frequency domain 



Computational Complexity Time Vs. Frequency

Layer Total Multiplies Time Total Multiplies Frequency

Spatial P × C × M × N 4 x P x C x K

Factored P × F × L x (M− L + 1)/S 4 x P x F x K

AM - -

Layer Parameters

Input Samples: M, Channels: C, Frequency: K

Factored Filter Size: N, Look Directions: P

Spectral Filter Size: L, Filters: F, Filter Stride: S



Results by Reducing Computation in Frequency
● Results with P=5 look directions, F=128 spectral filters
● We can reduce multiplies of the overall factored model by more 

than a factor of 4 with no loss in WER

Layer Spatial 
Multiplies

Spectral 
Multiplies

Acoustic
Model

Total 
Multiplies

WER
(Seq.)

fRaw 525.6K 62.0M 19.1M 81.6M 17.2

fCLP 10.3K 655.4K 19.1M 19.7M 17.2



Analysis of Factored Layer

● Beampattern in time is more spatially selective than frequency



Analysis of Spectral Layer
● Magnitude response of CLP and 

raw-waveform are bandpass filters
● Because time modeling has more 

spatial selectivity at factored layer, 
spectral layer outputs in time more 
diverse compared to CLP.



Summary, fCLP
● fCLP gives improvement in computation without loss in accuracy

Architecture WER (after Seq.)

raw, 1ch 19.2

D+S, 8 channel 18.8

MVDR, 8 channel 18.7

uRaw, 2ch 18.2

fRaw, 2ch 17.2

fCLP, 2ch 17.2



Neural Adaptive Beamforming (NAB)

B. Li, T. N Sainath, R. Weiss, K. Wilson and M. Bacchiani, "Neural Network Adaptive Beamforming for Robust 
Multichannel Speech Recognition," in Proc. Interspeech, 2016.

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45399.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45399.pdf


Motivation
● Thus-far all filter parameters are optimized on training data only
● It would be helpful to adapt parameters per utterance:

○ Cross session variations: Train and test mismatches cannot 
be reflected in those filters, such as room impulse responses 
different from training.

○ Within session variations: Dynamic changes within a single 
utterance cannot be address, such as moving speakers etc.

● Can we utilize statistics per training/test utterance to do adaptive 
beamforming similar to [Xiao et al, 2016]?



Neural Adaptive Beamforming (NAB)

● LSTM for each channel predicts a 
set of filter coefficients

● Convolve each channel with the 
filter coefficients

● This layer is mimicking F+S



Neural Adaptive Beamforming (NAB)
● LSTM-based adaptive beamforming
● Passed to a spectral layer to get 

frame-level features
● Gated history feedback

● Denoising MTL

Current inputs Previous state AM feedback



NAB Analysis
● Output of NAB at every frame gives 

a freq x direction x time beampattern
● Plot the beampattern of the NAB 

filters in the direction of the target 
speech and noise directions

● Responses in the target speech 
direction have relatively more 
speech-dependent variations than 
those in the noise direction



NAB Results
● We experimented NAB in both time and frequency domain:

○ NAB in time matches factored model
○ NAB in frequency degrades as too many filter coefficients to estimate

Method CE WER

fRaw, time 20.4

NAB, time 20.5

fCLP, freq 20.5

NAB, freq 21.0



Summary, NAB Model
● NAB model matches 

performance of factored 
models

Architecture WER (after Seq.)

raw, 1ch 19.2

D+S, 8 channel 18.8

MVDR, 8 channel 18.7

uRaw, 2ch 18.2

fRaw, 2ch 17.2

fCLP, 2ch 17.2

NAB, 2ch 17.2



Results on More 
Realistic Data

T. N. Sainath, R. J. Weiss, K. W. Wilson, B. Li, A. Narayanan, et al, "Multichannel Signal Processing with Deep Neural Networks for Automatic Speech 
Recognition," in IEEE Transactions on Speech and Language Processing, 2017.
B. Li, T. N. Sainath, J. Caroselli, A. Narayanan, M. Bacchiani, et al, "Acoustic Modeling for Google Home," in Proc. Interspeech, 2017.

https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
http://www.isca-speech.org/archive/Interspeech_2017/pdfs/0234.PDF


Experimental Setup, re-recorded Data
Training data:

● 22M English utterances
● 18,000 hours noisy data 
● artificially corrupted with music, ambient 

noise, recordings of "daily life" environments
● SNRs: 0 ~ 30dB, avg. = 11dB
● Reverberation RT60: 0 ~ 900ms, avg. = 

500ms
● 2 channel microphone distance: 71mm

Testing data:

● 13K English utterances
● 15 hours data 
● rerecorded: 

○ SNRs: 0 ~ 20dB
○ RT60: ~200ms
○ Rev-I: mic on coffee table
○ Rev-II: mic on TV stand

● 2 channel microphone distance: 75mm



Re-recorded Results
● On rerecorded sets, can get a 10-14% relative improvement with 2 channel fRaw, fCLP 

over single channel
● 2ch fRaw, fCLP matches the performance of a 7 ch oracle superdirective beamformer
● Google HOME is designed with 2 microphones to do server-side recognition

Method Rev I Rev II Rev I Noisy Rev II Noisy Ave

raw, 1ch 18.6 18.5 26.7 26.7 22.9

uRaw, 2ch 17.9 25.9 24.7 24.7 21.5

fRaw, 2ch 17.1 24.6 24.2 24.2 20.7

fCLP, 2ch 17.4 25.2 23.5 23.5 20.7

NAB, 2ch 17.8 18.1 27.1 26.1 22.3

7 ch, oracle superdirective - - 25.3 23.7



Google HOME System Overview

Channel 0

Channel 1

CFFT

CFFT

W
PE

fC
LP

G
rid-LSTM

CDPhones

Jointly Trained

LSTM

LSTM

LSTM

LSTM

LSTM

● Take what we learned on simulated and re-recorded data and apply to Google 
HOME data [Li, IS-2017]

● Input is CFFT features for time efficiency
● Weighted Prediction Error (WPE) to reduce reverberation [Caroselli, IS-2017]
● Neural beamforming uses fCLP, which gave best tradeoff between computation 

and WER 
● Grid-LSTM to model time-frequency correlations [Sainath, IS-2016; Li, IS-2017]



WER on Google HOME Traffic
● Setup: 

○ Model trained on 22,000 simulated noisy VS utterances
○ The final system: WPE + fCLP + Grid-LSTM
○ Cross-Entropy + Sequence training
○ Google Home real test set, representative of real traffic

● A 16% overall WER reduction on live Google HOME data
● Major win comes in noisy environments:

○ 26% WER reduction in speech background noise
○ 18% WER reduction in music noise

Model full clean
Noise Type

speech music Other
Baseline (log-mel) 6.1 5.1 8.5 6.2 6.0

Proposed 5.1 4.9 6.3 5.1 5.0
rel. -16.4 -3.9 -25.9 -17.7 -16.7

Table 4. WERs for the proposed Google Home system(with sequence training). 



In-Domain Tuning
● Continue sequence training on 4,000 hours in-domain data
● Another 4% relative improvements
● Overall, a 8~28% relative improvement over the baseline system.
● WER of Google HOME is around 4.9% on live data!

Model full clean
Noise Type

speech music Other
Baseline (log-mel) 6.1 5.1 8.5 6.2 6.0

Proposed 5.1 4.9 6.3 5.1 5.0
Proposed + Adaptation 4.9 4.7 6.1 4.9 4.8

rel. -3.9 -4.1 -3.2 -3.9 -4.0

Table 5. WERs for the proposed Google Home system with adaptation. 

https://venturebeat.com/2017/05/17/googles-speech-recognition-technology-now-has-a-4-9-word-error-rate/


Future Directions
● Google HOME works relatively well but there are areas to improve
● Multi-talker scenarios
● Using multiple modalities to improve robustness
● Multi-channel in end-to-end framework (similar to  [Ochiai 2017] )



Conclusions

Overview of Various Multichannel Architectures

Neural beamforming architectures include

fCLP achieves best tradeoff between WER and time 
and is used in Google HOME

Unfactored raw-waveform - uRaw

Factored raw-waveform - fRaw

Factored Complex Linear Prediction - fCLP

Neural Adaptive Beamforming - NAB
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Backup



Multi-channel WER Breakdown

Multi-microphone processing helps to enhance signal and suppress noise


